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The h e a r  muffin-tin orbitals/tight-binding/direct-screening 
method for the calculation of the electronit structure of 
crystals 

E M Borovskoit, A Ya Kraftmakhert and V M Tapilin: 
t Institute of Inorganic Chemistry. 630090 Novosibirsk, USSR 
t Institute of Catalysis, 630090 Novosibirsk, USSR 

Received 27 March 1991, in final form 16 July 1991 

Abstract. A new version of the tight-binding representation of the linear muffin-tin orbitals 
method based on the direct-screening of the muffin-tin orbitals (LMTTO-TB-DS) is presented. 
The equations for the screened basis wavefunctions. the screened structure matrix and the 
corresponding Hamiltonianareobtained, Test calculationsofthe chromiumandYBa,Cu,O, 
band structures proved the vdidily and accuracy of the method. 

1. Introduction 

The tight binding representation of the linear muffin-tin orbitals method (LMTO-TB) has 
proved to be one of the best approximations for treating defects and surfaces in crystals. 
At the same time the method as was first formulated by Andersen and Jepsen [l] is not 
a closed one because it needs a previous calculation of the structure matrix with the 
traditional LMTO method. Such a calculation as well as the following calculation of the 
screened structure matrix becomes very complex and time-consuming for crystals with 
a complex unit cell, e.g. the crystals of high-T, superconductors. 

To avoid these difficulties, to minimize the calculation time and to make the LMTO- 
TB method self-contained, we were forced to formulate aversion of the LMTO-TB method 
with direct screening of the wavefunctions (LMTO-TB-DS). 

We construct the basis wavefunctions from linear combinations of the linearized 
muffin-tin orbitals, centred on groups of neighbouring atoms. The linear combinations 
are chosen in a special way to cancel themselves everywhere outside these groups of 
atoms. The basis wavefunctions are localized and therefore satisfy the tight-binding 
approximation. 

The way of building the basis wavefunctions and the screened structure matrix is 
described in section 2 of this work. Section 3 is devoted to the construction of the 
Hamiltonian and its features. 

In section 4 we give a description of the test calculations of the band structures of 
chromium and of the high-temperature superconductor \'Ba,Cu,O,. The application 
of the method to the electronic structure of semi-infinite crystals, which was the main 
purpose of the work, will be described elsewhere. 

0953-8984/92/041069 + 12 $04.50 @ 1992 IOP Publishing Ltd 1069 



1070 E M  Borouskoi et al 

2. The screened basis functions and structure constants 

In the traditional LMTO method the wavefunctions of the basis set look like [2] 

where S,, is the nth muffin-tin (MT) sphere radius, YL is the spherical harmonic, 
L = { I ,  m} is the combination of angular quantum numbers, r, = r - R,, 

W r )  = vVnW + u & j u n ( r )  (2) 
rpUn is the solution of the radial Schrodmger equation inside the nth MT sphere for the 
energy E = E,,@vnisitsenergyderivative, a;" ischosen toensurecontinuousbehaviour 
of the radial part of x, function and its first derivative on the sphere, which, as we see 
later, is equivalent to the matching of function 

= i'YL(Wln(r)/@&) 

inside the sphere with the function 

K,(r) = i'YL(f)(r/S,J-'-' 

outside of it. 
Outside of its own MT sphere the Kh function may be represented as 

Kh(rn)  = - 2 S,~,.,J,.(r,)/Z(zr'+ 1) 

JLe,(r) = i"YL(f)(r/Sm)r r S S , .  

m # n, r, s S, 
L' (3) 

The function Nh from expression (1) is a generalization of the KLn function: it and 
its first derivative coincide with those of K,, function on the  spheres but they differ 
inside of them. Such generalization is obtained by the decomposition of N,(r) inside 
any MT sphere: 

NL, , ( r - )=  -EskL2, i"y,.(p)~~,,(rm)/2(u'+ I)O~.,(.S,) m # n , r , s ~ ,  (4) 

where the structure constants Sh,:L., are taken from expression (3). Here 

L' 

WAr) = rp A) + aL@vm(4 (5) 

and at is chosen to ensure matching of the function P h ( r )  = i'YL(f)@k(r)/@&(Sm) 
with the functionJ,,(r) on the  s sphere. Explicit expressions for the structure constant 
matrix elements were presented by Skriver [2]. 

The slow decrease of the functions (3) with rcauses the slow decrease of the structure 
constants with IR, - R,I, which in turn, yields large values of the Hamiltonian 
matrix elements placed far from the main diagonal. To avoid this difficulty, which is 
significant for calculations of surfaces and defects, Andersen and Jepsen [I] have pro- 
posed to use some linear combinations of functions (1) as the basis wavefunctions to 
obtain a fast decrease of the structure matrix elements with radius. The possibility of 
such a representation is seen from a simple electrostatic analogy: the functions K,(r) 
behave like electric potentials of charges with multipolarity I and value (Sn)/+*, So these 



The LMTGLTB direct-screening method 1071 

fields can be screened by multipoles with opposite charge placed at the neighbouring 
atoms. So, Andersen and Jepsen have defined the screened structure matrix as 

T = S(Z - a$)-' (6) 
where ncoefficients are chosen to obtain the fastest decrease of Twith radius. 

The direct calculation of expression (6) is very difficult, because it needs previous 
calculations of the non-screened structure constants and inversion of infinite-range 
matrices with simultaneous fitting of the CY parameters. Andersen and Jepsen [l] have 
proposed an interpolation scheme, which supposes that the non-diagonal T-matrix 
elements are independent of the lattice geometry and depend only on the relative 
distances between the atoms. This scheme works for cubic lattices with simple unit cells, 
but its reliability for complex crystals is not evident. 

To rid the LMT-TB method of these difficulties we shall use as functions of the new 
basis set linear combinations of the usual MTO (1): 

where 08. is a group of atoms placed inside the sphere with centre in R, and radius R,, 
and A coefficients are chosen to make the function YLr equal to zero everywhere outside 
the radius of screening R,. R, is chosen to reach a compromise between the quality of 
the screening and the calculation expenditure. Usually it includes some dozens of atoms 
(from two to 10-15 coordination spheres). 

For the calculation of the screening coefficients A, we shall construct the auxiliary 
function 

where KLn is substituted instead of NLx.  Let us demand that the function WO,, be zero 
together with its first and second derivatives in the centres of all the atoms outside the 
radius of screening: 

K'"(Rkn) + 2 K u ~ ( R ~ ) A L ~ ; L - ~  = 0 
L' .m 

where x, are orthogonal coordinates, R,, = Rk - R,, Rk Q R,. The KLn(r) functions 
satisfying the Laplace equation 

AKLn(r)  = 0 (10) 

so only five of six equations (9),  containing the second derivatives, are independent. 
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According to the commonly used set of independent d functions dx,,, d,,, dzz, dxi-,,> and 
d12, we shall use in (9) five combinations of the second derivatives: 

a 2 / a x a y  a2/ayaz a 2 / a x a z  a 2 / a x 2 - a 2 / a y 2  a 2 / a z 2 .  

From (3) and (8) we conclude that (9) leads to the condition that the new screened 
structure constants 

T L ~ ; L ”  = S L ~ . L ’ ~  + 2 A L n : L ” k S L ” k L ’ m  
L”.k 

become zero everywhere outside the radius of screening: 

TLn:L“ = 0 Rm B K. (11) 
Actually, the function K ( r )  in the centre of a MT sphere can be represented by a 

Taylor expansion. Taking into account (10) we obtain 

a a z  
K ( R ) x  + . . . + - K(R)xy  + . . . 

ax ay 
1 a 2  a 2  1 az 

4 a ~ -  
+ 4 (s - s) K ( R ) ( x 2  - U ’ )  + -7 K(R)(2z2 - x 2  - u2 

lr- RI S S ( x ,  y, L) = r - R .  

On the other hand, if we substitute explicit expressions for JL,,(r) into (3), we obtain 

Comparison of (12) and (13) shows that the non-screened structure constants are pro- 
portional to the values of functions K(r)  and their derivatives: 

Therefore, if the relations (9) are satisfied. then (11) is also valid. So not only the 
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but also the original functions (7) become zero outside the radius of screening 

Y L ~ ( ~ )  = NLn(rn)  + A L n : L I N L " k ( r k )  
L'.k 

=E TL.:L.mPt.,(rm) = 0 Rm R. (16) 
L' 

Since functions K ( R )  depend only on the crystal structure, it  follows from (9) 
that the coefficients A and the matrix Tare dependent only on the structure and are 
independent of the crystal potential. 

The full number of independent linear equations (9) or (11) is not limited because 
they can be formulated in the centre of any atom outside the radius of screening. In any 
case, their number may be more than the number of unknown coefficients A and the 
system (9) or (11) will have no exact solution. Such an 'overabundant' system can be 
solved approximately by the least-squares method (see for example [3]). According to 
the method, a set of equations with the number of equations larger than the number of 
unknowns 

2 anpi  + b, = 0 n e N ,  j S M < N  
can be replaced approximately by the set of equations with equal numbers of equations 
and unknowns 

i , j < M  
whereAii = 2 aNa,, Bi = X a,b.. Solving these equations, we shall find thescreening 
coefficients Aand the new basis wavefunctions. However, it is useful to include in (9) a 
number of additional equations, connected with an electrostatic analogy. To obtain the 
fast decrease (faster than l / r 3 ) )  of the basis wavefunctions at large radii, it is necessary 
to demand the cancelling of the total 'monopole', 'dipole' and 'quadrupole' moments of 
the groups of atoms taking part in the screening. These conditions look like 

~.6,,, +E s,A,,,, = 0 

S i f i  6 ~ . ~ ,  + (XmnSmA~n;sm + S k f i  AL,;pxm) = O  (dipole moments) 

EAiixi + Bi = 0 

(monopole moment) 
m 

m 

S : a  6 ~ ; .  2 ( X m n Y m n S m A ~ n : s m  + Y m n S i G A / \ L n ; p r m  (17) 
m 

+ X,S$ f i  AL.;pvm + SkV% ALnidXy) = 0 (quadrupole moments) 

( X m n  7 Y m a  9 z m n  ) = Rmo 

When the screening coefficients A and the screened structure matrix Tare deter- 
mined, we can represent the decomposition of functions (7) centred at R,, inside any 
other MT sphere, as 

~ L ~ W  = (Sn/2)-*'' 2 A L n ; L r m P L , m ( r m )  + T L n ; L d " d r n J  r m  e S,. (18) 
U 
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This decomposition is also valid at m = n, if we define ALnLLtn = 6 L L ,  . Outside the radius 
of screening (R ,  6 R,) TLnSLfm = 0 according to (ll), Ah;rm = 0 according to its defi- 
nition (7), so YLn(Rm) = 0. Therefore, the functions (7) preserve all the advantages of 
the linearized muffin-tin orbitals, as they were described by Skriver [2], and they are 
also localized in space. They satisfy the tight-binding approximation and are available 
for inhomogeneous crystal calculations. 

E M Borovskoi et a1 

3. The screened Hamiltonian and its hermiticity 

The Hamiltonian matrix elements in the basis of functions (7) can be easily expressed 
through the matrix elements of the traditional LMTO Hamiltonian and the screened 
structure constants. Taking into account (18) we obtain 

HL',;L~ = WL,,IH - E v i y ~ t 2  

= (Ar,,:L.kALn:L"k(P,IH - EvIPL"k) 
L".k 

where thesumis taken overall themspheresofthecrystal.Thematrixelementsonthe 
right-hand side of (19) are the matrix elements of the non-screened L ~ O  Hamiltonian, 
and explicit expressions for them are presented in [2]. The overlap matrix elements are 
obtained in this way. They differ from (19) only in the substitution of the unit operator 
for ( H  - E,,). 

When we go from the node representation, which has been used up till now, to the 
Bloch one, it is sufficient to build the Bloch matrices A and T. 

L1 

and to substitute them in (18) and (19). Here n and tn belong to the same unit cell. Q is 
a translation vector. We may restrict the sum in (20) by the condition Rm, = R + a E R,, 
since An,, and Trim. = 0 when IR, - R,, 1 is greater than the radius of screening of the site 
n due to the definition. 

The A(k) and T(k)  matrices are not Hermitian because the screening coefficients 
ALn;L.m are calculated independently for each L, n and they are not connected with the 
coefficientsAL'm;b. Nevertheless, the Aand Tmatricesareconnected with aHermitian 
non-screened structure matrix S. If we define AL~;L," =a,,., the definition of matrix T 
will be like the following: 

T ~ ; L , ,  = ALn;L"kSL"k.L" R ,  R n .  (21) 
L".k 

R k E b  

If we substitute this definition into (20) we obtain 

Th;L*m(k) = 2 exp(-ik-a) E A ~ ~ : ~ ~ ~ s ~ ~ : ~ ~ ~ ~ .  (224  
L1 L.,I' 

R,,=R,+oER, R I @ .  

Now let us represent R ,  = Ri + Q', where R, lies in the same unit cell asR,, R,, and a' is 
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a translation vector. Because of the translation symmetry, SLor ;L~ ,~  E SLnjiumu, where 
R,. = R,. -a' = R, + d'and d' = a  - a'.Then 

TLniLsm(k) = 2 exp(-ik .a )  x A L n ; ~ ~ ~ S ~ ~ y : L ~ , *  
(I L".j.o' 

R,,EOI. RTER, 

= 2 x e x p ( - i k * a ' ) A ~ . , ~ - > -  2 e x p [ - i k . ( a - ~ ' ) I S ~ " j : ~ , ~  

= 2 exp( -ik . a')AhLY exp( -ik . U")SL*j:L.m.. (22b) 

L".j a' a 

L " j  a' 0' 
R , d .  R,.tn'ER. 

Comparing this expression with that for the product of the Bloch matrices A and S ,  

2 ~ ~ ~ ~ ( k ) ~ ~ ~ ~ . ~ , ~ ( k )  = E 2 exp(- ik-a ' )~, . ;~ .~ 
L".i L".j d d 

e x p ( - i k . d ' ) ~ ~ ~ ; ~ - ~ "  
Rj,ER. 

(23) 

we can see that they differ only in the area of the sum over a" (in (23) it is performed 
over all the lattice). The relation (11) permits us to  spread the sum over a, d'in (20) and 
(22) to the entire crystal lattice, and thus the expressions (22) and (23) coincide. 

The obtained equality 

T(k) = A(k)S(k) (24) 

can serve as a criterion of the accuracy of the screening. 1.f the basis wavefunctions (7) 
do not cancel exactly outside the radius of screening, the relation (21) will be valid at 
R,  R, as well as (24). 

If the screening is exact, we can rewrite (18) and (19) as 

(254 
y d r )  = A l n ; L n m [ P L * m ( r m )  + sLW$"",(r,)l = ALn;L~mxL&) 

H ~ ~ : ~  = A ~ , ~ : ~ , ~ H ~ , . ~ : ~ - ~ A ~ , ~ ~ ~  

and in the Bloch representation 

YL,, (r, k) = A L . ; L . ~  (k)[Pi.m (r,)  + SL.,: &)Pt.~(r , ) ]  = A L n ; L ' m  (k)XL*m(r) 

HL":L~ (k) = A 2 , m ; r * j ( k ) H ~ " , ; ~ 7 ( k ) A ~ n ; ~ ?  (k) 
where = k L g l H -  E ,  lxCwk) is the non-screened LMTO Hamiltonian. This Ham- 
iltonian is Hermitian by definition, but the screened Hamiltonian (19) would be Her- 
mitian only if the relations (25) are valid, so the helmiticity of the constructed 
Hamiltonian may also be a criterion of the screening accuracy and the reliability of the 
method. 

We have shown that the LMTO-TEDS method can be reduced to the linear trans- 
formation of the basis set of the linearized muffin-tin orbitals and to the corresponding 
transformationofthe ~ ~ ~ ~ H a m i l t o n i a n  with the helpofthespeciallydeterminedmatrix 
A. Matrix A depends only on the crystal structure and is independent of the crystal 
potential. The main purpose of the method was to construct the localized wavefunctions 
and the short-range Hamiltonian that are necessary for inhomogeneous crystal cal- 
culations, At the same time we have also reduced the calculation time, since the main 
part of the calculation is the node representation calculation (constructing of equations 
(9) for the A coefficients, their solution and the Tmatrix construction (21)). The Bloch 

(256) 
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0 5 10 15 
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Figure 1 .  Screening in the chromium crystal. The screened struclure constants T*,m (full 
lines) and non-screened structure constants (broken line) as functions of the distance 
IR*J: (0)  one, (b) two and (c )  three coordination spheres take part in the screening. The 
corresponding radii of screening are marked by the arrows. 

matricesA(k), T(k)andtheHamiltonianareeasilybuiltineverypointofk-space because 
the sum over only a few dozen atoms is necessary. This is especially useful for precise 
calculations with a large number of k-points in the Brillouin zone. In the traditional 
LMTO method, at the same time, the Bloch structure constants S(k) are calculated 
separately in any point of the Brillouin zone, and thiscalculation needs the sum over a 
largc number of points in both r- and k-space, especially for complex crystal structures. 

4. The test calculations and accuracy 

To test the accuracy and reliability of the method, the band structure of chromium 
(BCC lattice) was calculated. To build the Hamiltonian we have used the self-consistent 
potential parameters [Z]. The calculation was provided for several radii of screening R,, 
so that one, two, three and fourcoordinationspheres(8,14,26and 50atomsrespectively) 
took part in the screening. The set of equations (11) and (17), which were written down 
for approximately 500 sites, have been solved. 

From the dependence of the screened structure constants Ton the radius (figures 1 
and 2) we can see that the atoms of a single coordination sphere do not provide effective 
screening. Indeed, although the T,,constantsdecreasesignificantly, the T,,, for example, 
remain of the same order of magnitude as the non-screened structure constants (figure 
2). To reach an effective (S7 orders of magnitude) suppression of the basis wave- 
functions and the screened structure constants outside the radius of screening, we need 
two or more coordination spheres. The T-matrix elements remain small in the points 
that were not included in equations (9) and for which the screening was not demanded 
directly. So the described approach to the construction of the localized basis wave- 
functions proves itself to be reliable. 

Thedrasticdecreaseofthe basiswavefunctionsisnotsufficient toensure theaccuracy 
of the calculation. Owing to this we used two quantitative criteria of accuracy. 
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0 5 10 15 
R o m l a u l  

Figure 2. Screening in the chromium crystal. The screened structure constants T + P ~ , ~  and 
non-screened structure constants Sdz~w.m. All the notations are as in figure 1 .  

Table 1. Some results of chromium band-structure calculation (in Ryd)" 

r z 

Spheres Em," E,"," E,,., He.- Ha." 

One 0.13698 3.75614 0.58087 3.15500 51.80 2.7 x IO-' 
(0.21377) (3.73809) (0.50162) (3.20626) (53.25) (3.2 x IO-') 

Two 0.21379 3.74018 0.50070 3.20873 81.53 1.6 x 10-l 
(0.21379) (3.73798) (0.50038) (3.20968) (81.35) (2.4 x IO-') 

Three 0.21379 3.73910 0.50030 3.21102 76.36 3.6 x 10-3 

Four 0.21379 3.73796 0.50038 3.20983 98.47 1.7 x 10-4 

(0.21379) (3.73911) (OSOOZS) (3.21087) (76.25) (4.7 x 

(0.21379) (3.73798) (0.50038) (3.20968) (98.48) (3.7 x 

L M O h  0.21382 3.73901 0.50030 3.21175 

' Thesecond rows (in parentheses) show the calculation with correctionof the non-screened 
'tails' of the basis wavefunctions. 

The standard LMO calculation (see [Z]), 

First, we controlled the Hamiltonian hermiticity. The Hamiltonian was represented 
as H = He + H a ,  where H ,  was Hermitian and Ha anti-Hermitian (H,t = -Ha). The 
calculation was thought to be an exact one when the anti-Hermitian part of the Ham- 
iltonian was negligible. 

Secondly, as pointed out above, since (11) can be satisfied only approximately, we 
have calculated for each matrix A the real values of matrix elements of T outside the 
radius of screening at about 400 lattice sites. Then these constants were taken into 
account in the Bloch matrix T(k)  and the Hamiltonian to introduce the corrections 
caused by the 'tails' of the functions (7), remaining after screening. The Hamiltonian 
with this correction changes insignificantly but its anti-Hermitian part reduces itself 
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Figure). The unit cell and the Brillouin zone of the YBa,Cu,O,crystal. 6s are empty muffin. 
tin spheres. 

strongly. The calculation was considered to be reliable when such a correction did not 
affect the eigenvalues of the Hamiltonian. 

In table 1 are presented the minimum and maximum eigenvalues in r and Z points 
of the Brillouin zone, the maximum Hermitian and anti-Hermitian Hamiltonian matrix 
elements in the Z point. We can see that the accuracy of screening increases with the 
numberofatoms takingpart in the screening(theanti-Hermitian part oftheHamiltonian 
without correction decreases, and the influence of the correction also reduces). When 
more than three coordination spheres take part in the screening, the following change 
of the eigenvalues is negligible and the resulting discrepancy of our method with the 
usual LMTO method is about 0.02%. The eigenvectors behave themselves with the 
improvement of the screening just as the eigenvalues, and the final partial weights of the 
s, p and d states, which depend on the eigenvectors, differ from the LMTO results also by 
0.02-O.05%. 

To calculate the band structure of the high-temperature superconductor 
YBa2Cu30,, the screened basis wavefunctions were constructed, as described in section 
2.  The non-screened basis set contained the s, p and d functions for the Y, Ba and Cu 
atoms,sandpfunctionsfor t h e 0  atomsandsfunctionsfor theempty Mrspheres, placed 
at theoxygenvacancies(figure3).Thedifferent radiiofscreeningwereusedfordifferent 
atoms toensure the best screening and, if possible, to minimize the calculation time. So 
each atom was screened by 4Q-60 neighbours. The sets of equations for each atom of 
the unit cell were constructed as for chromium. 

The behaviour of the screened structure constants (figure 4) demonstrates the screen- 
ing efficiency. The screened wavefunctions and structure constants are suppressed by 
?-7 orders of magnitude outside the radius of screening. The obtained screening was 
used in the self-consistent band-structure calculation for the YBa,Cu307 crystal. The 
band structure was calculated in 27 points of the Brillouin zone. 
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- ( b l  -.-.. - - 
m 0 - 
i - - 6  [ bl  

I Q ]  

-8 
0 5 10 15 20 

R < u l . m  

Figure 4. Screening in the Ba,Cu,O, crystal. The screaned structure constants TLCuiiL.m as 
the functions of the distance lRCuiiml. The radius of screening is marked by the arrow. (a)  
L = s, L' = s; ( b )  L = d,,, L' = s. 

Table2 Some results of the YBa2Cu10, band-structure calculations (in Ryd) 

LMT&WDS LMT&TB-DS* WTOb 

r E ,  -1.6306 -0.7388 -0.7474 
E,, -0.0193 0.0285 0.0286 
E73 0.8799 0.9009 0.8767 
H..., 245.0 245.0 
Ha.,* 1.0 x 10-1 1.0 x 10-3 

X E ,  -0.6960 -0.6960 -0.7048 
€3, 0.0262 0.0261 0.0215 
E,, 0.7232 0.7234 0.7262 
He.max 886.9 887.0 

0.3 X 10.' 0.7 x 10-3 

Y E ,  -0.6988 -0.6988 -0.7066 
E,, 0.0199 0.0200 0.0124 
€71 0.7320 0.7321 0.7275 
He.,,, 401.8 401.9 
Ha.,, 0.5 x lo-' 0.7 x 10-3 

Z E ,  -0.7370 -0.7370 -0.7465 
E,, 0.0225 0.0224 0.0161 
€73 0.8894 0.8861 0.8901 
Lax 245.0 245.0 
HB.W 1.0 x 10-1 0.8 x 10-3 

The calculation with correction of the non-screened 'tails' of the basis 

The standard LMTO calculation (see [2]). 
wavefunctions. 
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Some results of this calculation, which demonstrate the calculation accuracy, are 
presentedintable2.Threeeigenvalues(Et, Enand E,)) arecomparedwith thestandard 
LMTO method in r, X, Y and Z points (figure 3) of the Brillouin zone. As for chromium, 
we have also made an additional calculation with the non-screened 'tails' correction. 
Near the rpoint this correction changes the eigenvalues significantly, but in the rest of 
the Brillouin zone it is negligible. In any case, the results with correction show good 
agreement with the results of the standard LMTO method. So all the self-consistent 
calculations were done with this correction. The eigenvalue discrepancies do not exceed 
0.01-0.02 Ryd (2-3%) and only for the 6-8 highest bands (from 83) do they reach 0.05- 
0.15 Ryd. 

5. Conclusions 

We can conclude that the LMTO-TEDS method demonstrates its reliability for crystal 
electronic structure calculations. The direct screening procedure ensures efficient 
screening of the basis wavefunctions and structure constant matrix. To estimate the 
reliability of the calculation, numerical criteria for screening accuracy can he applied. 

The results of test calculations of chromium and YBa2Cu,0, band structures show 
that for simple crystal lattices the LMTO-TB-DS methodcauses no additional uncertainties 
in comparison with the usual LMTO method, and for complex crystal structures it keeps 
a satisfactory accuracy. 
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